Population Aging, Cohort Replacement, and the Evolution of Income Inequality in the United States

Vesa-Matti Heikkuri\(^1\) and Matthias Schief\(^2\)

\(^1\)Department of Economics, Brown University
\(^2\)Department of Economics, Brown University

Abstract

We study how demographic change affects the evolution of household income inequality in the United States, both historically and prospectively. We emphasize the distinct roles of population aging and cohort replacement and develop a methodology to study their joint compositional effect on income inequality. In the process, we also develop a novel methodology to aggregate subgroup Gini coefficients into a population-level Gini coefficient based on the principle of maximum entropy. We find that rising income inequality is embodied in birth cohorts born since the mid-20th century and that most of the increase in inequality over the past two decades can be accounted for by demographic change. Furthermore, we predict that demographic change over the next two decades will lead to further increase of the Gini coefficient by one to six percentage points.

Keywords: Demographic change, income inequality, compositional effects

\(JEL\) classification: C46, D31, J11
I Introduction

Income inequality in the United States is much higher today than half a century ago. Over this time period, the technological and institutional environment as well as the characteristics of the population have changed substantially. In this paper, we study how demographic change affects household income inequality by altering the composition of the population in terms of age groups and birth cohorts. Our goal is to explain how demographic change has affected the evolution of income inequality in the past and to project how income inequality will evolve under future demographic change. While predicting future changes in the technological and institutional environment is difficult, demographics can be reliably projected several decades into the future.

We emphasize that demographic change affects inequality both through population aging and cohort replacement. Changes in the age structure of the population affect inequality because the distribution of income among older households differs systematically from that among younger households. Experience, on-the-job training, and subsequent retirement produce a hump-shaped age profile for average income. Moreover, heterogeneous returns to experience, persistent idiosyncratic shocks, and differential rates of wealth accumulation all imply that income inequality is higher among older households. The replacement of older cohorts by more recent birth cohorts affects income inequality because the distribution of income-relevant characteristics, such as the distribution of human capital (Altonji et al., 2012), the allocation of talent across professions (Hsieh et al., 2019), and the degree of positive assortative mating (Eika et al., 2019), differs between cohorts.

We study how demographic change affects household income inequality by considering the following thought experiment: How would income inequality evolve over time if the economic environment is held fixed in a given base year and only demographic change is allowed to occur? In this thought experiment, the returns to characteristics are held fixed and households age within a static economic environment. New cohorts enter the economy with characteristics that are identical to those of the youngest cohort in the base year whose cohort-specific characteristics were shaped in the same economic environment. Older cohorts eventually exit the economy and the population age structure evolves as observed in the past or projected in the future.

We develop a parametric methodology to implement our thought experiment. We model the evolution of income distributions for demographic subgroups by an additive age-period-cohort model, which allows us to account for cohort differences in both observed and unobserved characteristics. Using household income data for the United
States, we estimate life-cycle profiles and cohort differences in mean incomes and income Gini coefficients. We document important cohort differences in income distributions that are not accounted for by differences in age and educational attainment. We then use the estimated age and cohort effects to predict how the moments of subgroup income distributions evolve under demographic change when the economic environment is held fixed. Finally, we use these counterfactual moments together with predicted population shares to study the effect of demographic change on aggregate inequality.

To derive the aggregate income distribution from subgroup moments, we follow the principle of maximum entropy. In particular, we model subgroup income distributions, using the parametric distribution that maximizes entropy for given mean and Gini coefficient. This distribution imposes the least amount of information in addition to knowing the mean and Gini coefficient. We show that our methodology is able to aggregate subgroup Gini coefficients into the aggregate Gini coefficient with only limited loss of information.

We find that demographic change plays an important role in the evolution of population-level income inequality in the United States – both in the past and in the future. In our thought experiment, the compositional effects of demographic change can account for all the increase in income inequality over the past two decades. Moreover, we predict that demographic change will further increase inequality in the near future, with our estimates suggesting an increase in the income Gini coefficient of between one and six percentage points by the year 2040.

Our methodology allows us to isolate the effect of population aging and cohort replacement. We find that both population aging and cohort replacement have contributed substantially to the rise in household income inequality in the recent past. However, projected further aging of the US population in the near future will not affect household income inequality. Instead, the predicted increase in inequality will be driven almost exclusively by cohort replacement.

Our findings suggest a more important role for demographic change in explaining the evolution of household income inequality than is generally found in the literature (e.g., Kuhn et al. [2020]). Previous studies of compositional effects have typically relied on using a re-weighting method, following DiNardo et al. [1996]. For comparison, we also implement our thought experiment using a re-weighting method that accounts for compositional changes in terms of the age structure and educational attainment of the US population. In this exercise, we find no effect of demographic change on household income inequality; however, we argue that the results from this re-weighting analysis
are misleading. Our estimated cohort effects suggest that birth cohorts have become progressively more unequal in their income-relevant characteristics since the mid-20th century, even after accounting for educational attainment. Hence, as we assign more weight to older households in a given cross-section to track population aging, we also assign more weight to earlier and more equal birth cohorts. As a result, re-weighting fails to capture the effect of cohort replacement and confounds the effect of population aging.

The rest of the paper is structured as follows. In section I.1, we discuss how our paper relates to the existing literature, and we introduce our data sources in section I.2. In section II, we develop our parametric method. In section III, we present our main results. Section IV implements the thought experiment using a re-weighting analysis and discusses its shortcomings. Section V concludes.

I.1 Related literature

The literature on demographic change and economic inequality typically studies the compositional effects of a changing population structure using re-weighting methods. Recent papers in this literature include Kuhn et al. (2020) and Auclert et al. (2021), who study the effects of population aging, and Eika et al. (2019), who study the impact of changing household characteristics. Kuhn et al. (2020) assemble a new micro data set for household income and wealth in the US going back to 1949 and study, among other things, the effect of demographic change on income and wealth inequality in the past. They find a moderately positive effect of population aging on income inequality that is roughly constant across the sample period. Auclert et al. (2021), on the other hand, use population projections to predict the compositional effect of demographic change on the future evolution of the wealth-to-output ratio in the United States and a number of other countries. They predict that population aging will have a significant impact on the wealth-to-output ratio in the United States over the next decades. Eika et al. (2019) study the role of educational assortative mating on household income inequality. They find that educational assortative mating accounts for a non-negligible share of cross-sectional inequality but that the trend in sorting has hardly affected income inequality. They also find that the increase in college attendance and completion rate by women has slowed down the increase in household income inequality.

The compositional effects of a changing population structure on economic inequality

Older papers in this literature include Burtless (1999), Daly and Valletta (2006), Larrimore (2014), and Greenwood et al. (2014).
have also been studied in the labor literature, where the focus has predominantly been on the skill composition of the population and the role of skill-biased technical change (Juhn et al. 1993; Lemieux 2006; Autor et al. 2008; Hoffmann et al. 2020). Lemieux (2006), for example, studies how changes in the composition of the US population in terms of experience and educational attainment affect residual wage inequality using a re-weighting analysis. He finds that increases in within-group inequality are concentrated in the 1980s and that the increase in population-level wage inequality in the subsequent decade is driven by composition effects.

Cohort differences in income distributions play an important role in our paper. A source of cohort differences that has recently received increased attention is scarring. This literature has documented long-lasting negative effects on earnings and employment for cohorts entering the labor market in a bad economy, and often finds that these effects are heterogeneous and therefore affect inequality (Raaum and Røed 2006; Kahn 2010; Oreopulos et al. 2012; Rothstein 2019; Schandt and Von Wachter 2019). Outside the scarring literature, there is evidence of secular trends in cohort-specific characteristics. Card and Lemieux (2001) attribute the rising college premium to a slowdown in educational attainment for cohorts born after 1950. Hendricks and Schoellman (2014) explain the same phenomenon by growing ability gaps between high school and college-educated workers across different birth cohorts. More recently, Hsieh et al. (2019) argue that cohort-specific improvements in the allocation of talent have contributed significantly to US economic growth. Similarly, the literature on structural change has documented that a large share of labor reallocation can be accounted for by new cohorts entering growing industries (Lee and Wolpin 2006; Hobijn et al. 2019; Porzio et al. 2021).

To construct counterfactuals, we estimate how income distributions depend on age and birth cohort using a standard age-period-cohort model\(^2\). In this respect, our paper is also related to the literature devoted to studying life-cycle profiles of economic inequality. In particular, we build on Deaton and Paxson (1994a,b) who estimate age profiles for within-cohort income and consumption variance in the US and propose a normalization for dealing with the linear dependence of age, period, and cohort effects. Heathcote et al. (2005) point out the importance of the choice of normalization in estimating the age profile of income inequality. To deal with this issue, we follow Lagakos et al. (2018) who suggest exploring the results under a range of different normalizations.

\(^2\) Other papers that also use an age-period-cohort model to study life-cycle behavior include Attanasio (1998), Storesletten et al. (2004), Low et al. (2010), Huggett et al. (2011), Aguiar and Hurst (2013), and Heathcote et al. (2014).
I.2 Data sources

We use data on household income for the years 1968-2020 from the Current Population Survey (CPS). Our measure of household-level income is the total money income during the previous calendar year of all adult household members. Total money income is the sum of wages and salaries, income from professional practice and self-employment, rental income, interest, dividends, transfer payments, as well as business and farm income. We complement the CPS data with a longer series of harmonized repeated cross-sections based on archival data from historical waves of the Survey of Consumer Finances that was recently made available by Kuhn et al. (2020). This data set spans the time period 1949-2019 and reports household-level total income, which has the same definition as total money income in the CPS. We follow Kuhn et al. (2020) and refer to these data as the SCF+ data. The CPS and SCF+ data sets complement each other. While the CPS data set has larger sample size, the SCF+ data cover two more decades.

About 0.16 percent of all households in the CPS data and 0.31 percent of all households in the SCF+ data report negative total income. We censor the income distribution by re-coding negative values as zeros. To avoid problems associated with topcoding in the CPS and SCF+ data sets, we focus on income inequality among the bottom 99%.

For the CPS data, we use annual surveys between 1968 and 2020. For the SCF+ data, we use triennial waves constructed by Kuhn et al. (2020) which leave us with data for every third year between 1950 and 2019 with the exception of the years 1974, 1980, and 1986. We correspondingly aggregate the data into three-year age groups and birth cohorts. We assign households to their respective birth cohort based on the age of the household head. Furthermore, we restrict our attention to households in which the household head is between 26 and 79 years old in the CPS data and between 26 and 3.

3Specifically, we use the variable HHINCOME from the IPUMS CPS harmonized microdata (Ruggles et al., 2020).

4The data set in Kuhn et al. (2020) covers the time period 1949-2016. We added to this data set the 2019 Survey of Consumer Finances.

5After applying sampling weights, households with negative income make up 0.13 percent of the population in both the CPS and the SCF+ data sets.

6Negative income levels pose a challenge for the interpretation of differences in income inequality across different subgroups of the population, as they can inflate the Gini coefficient even if the dispersion of income is low.
The median age in the US population has increased from 27 in 1970 to 38 in 2019, and is predicted to increase to 42 by the year 2060. The leftmost panel in figure 1 shows the age distribution in the US population in the years 1970 and 2010, as well as projections for the year 2050. Over this time period, old people progressively make up a higher fraction of the US population.

The middle and the right panels show the corresponding age distribution among household heads in the CPS and the SCF+ data sets. As we want to study the role of demographic change not only in the past but also in the future, we need to translate the predicted changes in the age structure of the US population into corresponding changes in the age structure of household heads in the survey data. We do this by using the constant headship rate method. That is, we compute the probability that an individual of a given age in the latest survey wave is recorded as the household head, and we assume that these probabilities remain fixed in the future.

II Methodology

In this section, we develop a parametric approach to implement our thought experiment of holding the economic environment fixed while allowing demographic change to take place. We proceed in three steps. First, we estimate the life-cycle profiles of average income and income inequality for different birth cohorts and education groups. Second, we use our estimates to construct counterfactual moments for income distributions of demographic subgroups according to our thought experiment. In particular, we predict how income distributions evolve as cohorts age when the economic environment is held fixed. In line with our thought experiment, we assume that cohorts entering the economy after any given base year have the same characteristics as the youngest cohort.

7 The definition of the household head in the SCF+ data is the male partner in mixed-sex couples, the older partner in same-sex couples, and the single core individual in households without a core couple. In the CPS data, the definition of household head changed in the year 1980. While it was similar to the SCF+ in the years prior to 1980, the CPS has since discontinued the use of the name "household head" and has replaced it with the name "householder". A householder is the person in whose name the housing unit is owned or rented or, in the case of a married couple jointly owning or renting the house, it is either of the spouses. In our main results, we assign households to their respective age groups based on the age of the individual who is called household head/householder in the respective data set. As a robustness check, we re-define household heads in the CPS to be always the male partner in mixed-sex couples and the older person in same-sex couples to be consistent with the definition in the SCF+ data. The results hardly change under this alternative definition. Finally, we drop household heads aged 80 in the CPS data, because for some waves individuals that are older than 80 are coded as 80.

8 United States Census Bureau (2017).
in the base year. Third, we use predicted population shares to construct a population-level income distribution and plot the evolution of income inequality. In the remainder of this section, we discuss each of these steps in detail.

II.1 Estimating age, period, and cohort profiles

We assume that two key moments of the income distribution, the logarithms of the mean and the Gini coefficient, are described by an additively-separable age-period-cohort model. This allows us to use repeated cross-sections in the CPS and SCF+ data sets to estimate how the distribution of income differs across birth cohorts and how it evolves within cohorts as they age. We motivate the age-period-cohort model by showing that a simple income process leads to additively separable age, period, and cohort profiles in the logarithms of mean income and the income Gini coefficient.
II.1.1 A simple income process

In each period, each household with observed characteristics \(X = \{\text{age, education}\} \) experiences an income shock that has two components: a level component and an inequality component. The level component increases or decreases all incomes by a given factor while leaving inequality between the households unchanged. The inequality component stretches or compresses the income distribution while leaving the average income unchanged. In particular,

\[
y_t = (1 + \beta)
 \left(y_{t-1} + \gamma (y_{t-1} - \mathbb{E}[y_{t-1}]) \right)
\]

where \(y_t \) denotes household income, \(\beta \in [-1, \infty) \) and \(\gamma \in [-1, \infty) \) denote the level and inequality component respectively, and \(\mathbb{E}[y_{t-1}] \) is the mean household income in the demographic group. A positive \(\beta \) means that the shock increases average income, while a positive \(\gamma \) means that the shock increases inequality. Negative value of \(\beta \) and \(\gamma \) achieve the opposite.

We assume that income shocks are education-specific and separable in age and period, so that

\[
1 + \beta(e, a, t) = (1 + \beta_a(e, a))(1 + \beta_t(e, t)),
\]

\[
1 + \gamma(e, a, t) = (1 + \gamma_a(e, a))(1 + \gamma_t(e, t)).
\]

Finally, we allow income distributions to differ between birth cohorts due to the distribution of unobserved but fixed characteristics like assortative mating, sorting into occupation, or the quality of education.

With this income process, we can model how changes in the technological and institutional environment affect the distribution of income in the economy. For example, skill-biased technical progress that disproportionately increases the incomes of high earners corresponds to an income shock where \(\beta_t \) and \(\gamma_t \) are both greater than zero. A recession on the other hand corresponds to an income shock where \(\beta_t \) is negative. These income shocks also allow us to model life-cycle dynamics. For example, accumulation of labor market experience that complements skills is captured by positive \(\beta_a \) and \(\gamma_a \).

The income of household \(i \) headed by an individual with education \(e \) at age \(a \) in
time t is given by

$$y_{i,a,t}^e = \prod_{k=1}^a \left(1 + \beta_a(e,k) \right) \prod_{m=t-a+1}^t \left(1 + \beta_t(e,m) \right) \times \left[y_{i,0,t-a}^e + \left(\prod_{k=1}^a \left(1 + \gamma_a(e,k) \right) \prod_{m=t-a+1}^t \left(1 + \gamma_t(e,m) \right) - 1 \right) (y_{i,0,t-a}^e - \mathbb{E}[y_{a,t}^e]) \right].$$

This income process implies education-specific and additively separable age, period, and cohort profiles for the logarithms of mean income and the income Gini coefficient9, so that

$$\ln \left(\mathbb{E}[y_{a,t,c}^e] \right) = \sum_{k=1}^a \ln \left(1 + \beta_a(e,k) \right) + \sum_{m=1}^t \ln \left(1 + \beta_t(e,m) \right) + \ln \mu_{0,c}^e,$$

$$\ln \left(G(y_{a,t,c}^e) \right) = \sum_{k=1}^a \ln \left(1 + \gamma_a(e,k) \right) + \sum_{m=1}^t \ln \left(1 + \gamma_t(e,m) \right) + \ln G_{0,c}^e,$$

where $\mu_{0,c}^e$ and $G_{0,c}^e$ are the initial mean and the Gini coefficient of birth cohort c with education e before receiving any income shock10. Hence, we can estimate these profiles using a standard age-period-cohort model.

II.1.2 Age-period-cohort model

We partition our main sample into year-by-age-by-education sub-samples and compute the mean and Gini coefficient in each sub-sample. As a result, we obtain two balanced panels in age and survey waves – one for households with a college-educated household head and another for households without a college-educated household head. We model the income moments as being generated by additive age, period, and cohort effects.

The model can be written as

$$M_{apc} = \alpha_a + \pi_p + \kappa_c + \varepsilon_{apc}, \quad (1)$$

where M_{apc} is the observed moment at age a, in period p, and in cohort c. The age,

9The additive separability for the logarithm of the Gini coefficient follows from the fact that the inequality shock multiplies the Gini coefficient by $1 + \gamma$, see proposition 10 in Heikkuri and Schief (2022).

10Note that additive separability does not strictly require that the income of each household evolves according to this income process as long as the percentiles of the income distributions follow this process. Put differently, only the distribution of incomes but not the positions of individual households in it matters.
period, and cohort effects are captured by α_a, π_p, and κ_c, respectively. There is also a mean zero error term, ε_{apc}, which captures both sampling variance and unmodeled noise. We estimate this model separately for college and non-college educated households. Note that in this model we are not imposing any functional form on the age, period and cohort profiles. The additive separability of the model together with repeated cross-sectional data allows us to distinguish the effects of age, period and cohort.

Unfortunately, equation (1) is not identified and cannot be estimated from the data. An obvious problem is that we need to normalize at least one each of the age, period, and cohort effects. A more fundamental identification problem, however, arises because of the linear dependency between age, period, and cohort. The nature of the identification problem can be seen more clearly when we decompose age, period, and cohort effects into two parts – linear trends in age, period, and cohort, and fixed effects that capture deviations from these trends. In particular, if we require that the fixed effects sum to zero and be orthogonal to a trend, then the model can be rewritten as

$$M_{apc} = \theta + \alpha_a + \pi_p + \kappa_c + \hat{\alpha}_a + \hat{\pi}_p + \hat{\kappa}_c + \varepsilon_{apc}$$

with the following restrictions on the parameters,

$$\sum_a \hat{\alpha}_a = 0 \quad \text{and} \quad \sum_a \hat{\alpha}_a = 0,$$

$$\sum_p \hat{\pi}_p = 0 \quad \text{and} \quad \sum_p \hat{\pi}_p = 0,$$

$$\sum_c \hat{\kappa}_c = 0 \quad \text{and} \quad \sum_c \hat{\kappa}_c = 0.$$

In this formulation, the overall trend in the age, period, and cohort profiles are captured by the coefficients α, π, and κ, respectively, and θ is a constant. While we still cannot...
separately estimate all three linear trends in the age, period, and cohort profiles, the deviations from the linear trends are identified and can be estimated from the data even if we do not know what the linear trends are. Moreover, the relationship between the linear trends in the age, period, and cohort profiles is known, so that only a single identifying assumption on any of the linear trends in equation (2) is enough to estimate this model. For example, if we set $\pi = \kappa$, then our estimated parameters are

$$\hat{\alpha} = \alpha^* + \frac{\pi^* - \kappa^*}{2}$$ \hspace{1cm} (6)$$

$$\hat{\pi} = \hat{\kappa} = \frac{\pi^* + \kappa^*}{2}$$ \hspace{1cm} (7)$$

where $\hat{\alpha}$, $\hat{\pi}$, and $\hat{\kappa}$ are the estimated linear trends for age, period, and cohort, and α^*, π^*, and κ^* are the true linear trends in the data generating process.

II.1.3 Estimation results

Our additively separable model is able to account for a large share of the variation in mean incomes and income Gini coefficients at the subgroup level. Moreover, the estimated model finds important cohort effects in both mean income and income inequality that are not driven by differences across cohorts in the share of college-educated households. Table 1 reports the coefficient of determination, together with a Shapley decomposition of the share of explained variation into the respective parts accounted for by the linear trends in age, period, and cohort, and the deviations from these trends in the age, period, and cohort profiles.\footnote{The table also reports the number of observations in each model, which is given by the number of year-age combinations in each data set.} Nonlinear cohort effects account for between 11% and 30% of the explained variation in the estimated models, underscoring the importance of cohort differences in the process of demographic change.

In figures 2 and 3, we plot the age, period, and cohort profiles of mean income and income inequality estimated separately on the CPS and the SCF+ data sets. The profiles are plotted after normalizing the linear trends in cohort and period effects to be of equal magnitude. As discussed in section II.1, nonlinearities in the profiles are identified from the data and do not depend on the normalization of the linear trends.\footnote{In appendix A we plot the profiles for alternative normalizations of the linear trends.}

We find that average income is increasing in age until about age 50, and decreasing thereafter. Similarly, income inequality also increases over the working life and flattens out after retirement age. Compared to households without a college-educated household
Panel A: CPS

<table>
<thead>
<tr>
<th></th>
<th>(Log) mean income</th>
<th>(Log) income Gini</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>College</td>
<td>Non-college</td>
</tr>
<tr>
<td>N</td>
<td>2,862</td>
<td>2,862</td>
</tr>
<tr>
<td>R^2</td>
<td>0.95</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Shapley decomposition of R^2

- Linear trends: 0.23 0.32 0.80 0.74
- Nonlinear age effects: 0.55 0.43 0.05 0.07
- Nonlinear period effects: 0.03 0.03 0.03 0.02
- Nonlinear cohort effects: 0.19 0.22 0.11 0.17

Panel B: SCF+

<table>
<thead>
<tr>
<th></th>
<th>(Log) mean income</th>
<th>(Log) income Gini</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>College</td>
<td>Non-college</td>
</tr>
<tr>
<td>N</td>
<td>399</td>
<td>399</td>
</tr>
<tr>
<td>R^2</td>
<td>0.94</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Shapley decomposition of R^2

- Linear trends: 0.15 0.36 0.54 0.46
- Nonlinear age effects: 0.41 0.23 0.03 0.09
- Nonlinear period effects: 0.24 0.17 0.19 0.15
- Nonlinear cohort effects: 0.21 0.24 0.25 0.30

Table 1: Sample sizes and explained variation in the age-period-cohort model.

head, households with a college-educated household head experience a steeper increase in income over the working life and a sustained increase in income inequality even at older ages. We estimate very similar age profiles in both data sets.

In the period profiles, we document cyclical movement in log mean income reflecting business cycles, which can be seen more clearly in the annual CPS data. The period profiles also document a stark increase in income inequality in the early 1980s among non-college educated households that is followed in the 1990s by a similar increase for college-educated households. Interestingly, while income inequality at the population level has increased substantially in the past two decades, we find much less of an increase or even a decrease in period effects for income inequality over this time period. Finally, in the SCF+ data where we estimate period effects going back to 1950, we find that period effects for the income Gini coefficient show little trend before the 1980s.

Most strikingly, we find pronounced nonlinear cohort profiles for both average income and income inequality. The cohort effects for log mean income are increasing up to approximately the birth cohort 1947 and become flat or decreasing thereafter. The
cohort effects for income inequality, on the other hand, describe a U-shaped profile and are increasing during the second half of the 20th century. These patterns are found in both the CPS and the SCF+ data.

A potential concern is that the estimated profiles are affected by the fact that we observe different cohorts in different time periods and at different ages, and that we observe some cohorts more often than others. We address this concern by re-estimating the age-period-cohort model on different restricted time windows and comparing the resulting cohort profiles. For both data sets, we find that the estimated profiles from restricted samples align well with the ones from the full sample. We describe the procedure in more detail and show the estimated profiles in appendix B.

II.2 Constructing counterfactual moments

We use the results from the age-period-cohort model to construct counterfactual income distributions at the cohort level by assigning to each cohort in each year their education-specific cohort and age effects while keeping period effects fixed at the base year level. We set the cohort effects for newly entering cohorts equal to the cohort effect of the youngest cohort observed in the base year.

II.2.1 Normalizing the linear trends

We use both the linear and nonlinear age, period and cohort effects to construct counterfactual moments. While the estimated nonlinear effects are invariant to the chosen normalization, the estimated linear trends depend on it. Hence, the choice of normalization matters for the construction of counterfactual moments.

The normalization does not affect the predicted values of the model, and it can therefore not be estimated from the data. To address this issue, we follow Lagakos et al. (2018) and derive our results under three different normalizations. As extreme cases, we set either the period or the cohort trend in the income Gini coefficient to zero. As an intermediate case, we assume that the trends in period and cohort effects are of equal magnitude and we let the data tell us what these trends are. We treat the intermediate case as our baseline normalization. In the case of log mean income, we always use the baseline normalization. While our results depend quantitatively on the normalization for income Gini, our qualitative findings are invariant to the choice of normalization.\(^{15}\)

\(^{15}\)We have also derived our results under different normalization of the trends in log mean income. The results do not vary meaningfully.
Figure 2: Age-, period-, and cohort profiles of log mean income and log Gini coefficients in the CPS data. The first element in each profile is normalized to zero.
Figure 3: Age-, period-, and cohort profiles of log mean income and log Gini coefficients in the SCF+ data. The first element in each profile is normalized to zero. The period fixed effects for the years 1974, 1980, and 1986 are linearly interpolated.
It is likely that income growth is due to both period and cohort effects. Technological progress which increases incomes independently of age and education naturally constitutes a trend in period effects. Increasing levels of human capital, to the extent they are generated by more schooling and higher quality of education or cohort-specific improvements in health, on the other hand, are cohort effects. Jones (2002) calculates that almost a third of growth in GDP per capita between 1950 and 1993 can be accounted for by rising educational attainment while roughly two thirds is accounted for by improved productivity.\footnote{Jones (2021) updates these numbers to one quarter and two thirds for years between 1950 and 2007. The remainder is explained by the increase in the ratio of labor force to population.} Moreover, Hsieh et al. (2019) shows that a significant share of productivity growth is explained by improved sorting of talent, which occurs between cohorts.

Assessing trends in income inequality is more difficult. To the extent that rising inequality is driven by technology or policies that increase inequality independent of household characteristics, it should be captured by period effects. A reduction in redistribution from rich to poor, for example, is a period effect that increases inequality. On the other hand, increasing inequality due to secular trends in cohort-specific characteristics such as the distribution of human capital, sorting to education and occupations, or positive assortative mating should be attributed to the trend in cohort effects. Since a trend in both period and cohort effects is plausible, we consider the intermediate normalization of equal period and cohort trends in income inequality a sensible baseline normalization.\footnote{Huggett et al. (2011) find that more than 60% of lifetime earnings and wealth inequality is due to characteristics that are fully formed by early adulthood. It is therefore plausible that a significant share of the rising income inequality can be explained by changing cohort-level characteristics.}

\section{II.2.2 Implementing the thought experiment}

We use the estimated age, period, and cohort effects for log mean income and the log Gini coefficient to construct a counterfactual mean, $\tilde{\mu}_{a,p,c,e}$, and a Gini coefficient, $\tilde{g}_{a,p,c,e}$, for each subgroup as implied by our thought experiment. We give each age-education-group their corresponding age effect, the period effect of the base year, and the estimated cohort effect for cohorts that are present in the base year, and the cohort effect of the youngest age-group a_0 in base year \bar{p} for cohorts that enter the economy after the base year. In particular, for base year \bar{p} and target year $p' > \bar{p}$, we set the sub-group moments as...
\[\tilde{\mu}_{a,p}',c,e = \begin{cases} \exp \left(\theta^\mu + \alpha^\mu_a + \pi^\mu_e \bar{p} + \kappa^\mu_c + \tilde{\alpha}^\mu_{a,e} + \tilde{\pi}^\mu_{p,e} + \tilde{\kappa}^\mu_{c,e} + \frac{\sigma^2_{e,\mu}}{2} \right) & \text{if } c < \bar{c}_0, \\ \exp \left(\theta^\mu + \alpha^\mu_a + \pi^\mu_e \bar{p} + \kappa^\mu_{c,e} + \tilde{\alpha}^\mu_{a,e} + \tilde{\pi}^\mu_{p,e} + \tilde{\kappa}^\mu_{c,e} + \frac{\sigma^2_{e,\mu}}{2} \right) & \text{if } c \geq \bar{c}_0, \end{cases} \] (8)

\[\tilde{\nu}_{a,p}',c,e = \begin{cases} \exp \left(\theta^g + \alpha^g_e a + \pi^g_e \bar{p} + \kappa^g_{c,e} + \tilde{\alpha}^g_{a,e} + \tilde{\pi}^g_{p,e} + \tilde{\kappa}^g_{c,e} + \frac{\sigma^2_{e,g}}{2} \right) & \text{if } c < \bar{c}_0, \\ \exp \left(\theta^g + \alpha^g_e a + \pi^g_e \bar{p} + \kappa^g_{c,e} + \tilde{\alpha}^g_{a,e} + \tilde{\pi}^g_{p,e} + \tilde{\kappa}^g_{c,e} + \frac{\sigma^2_{e,g}}{2} \right) & \text{if } c \geq \bar{c}_0, \end{cases} \] (9)

where \(\bar{c}_0 := \bar{p} - a_0 \) is the youngest cohort present in the base year, superscripts \(\mu \) and \(g \) indicate the statistical moment and subscript \(e \) the education group for which the parameters have been estimated, and \(\sigma^2_{e,\mu} \) and \(\sigma^2_{e,g} \) are the estimated variances of the error term for the log mean income and the log Gini coefficient\(^{18}\).

II.3 An aggregation methodology for the Gini coefficient

To study the evolution of income inequality at the population level, we need to aggregate the predicted subgroup means and Gini coefficients into a population-level Gini coefficient. Unfortunately, the Gini coefficient is not an aggregative inequality measure. That is, it is not sufficient to know the mean, Gini coefficient, and the population share of each subgroup to reconstruct the population-level Gini coefficient (Bourguignon, 1979). To overcome this issue, we propose a method to map the moments of subgroup distributions into the population-level Gini coefficient. The idea is to fit a parametric distribution for each set of subgroup moments and aggregate these distributions to generate a population-level income distribution.

We follow the principle of maximum entropy\(^{19}\) by Jaynes (1957) and assume that income distributions at the subgroup level follow the parametric distribution that maximizes entropy subject to being supported on the positive real line and having given

\(^{18}\)To convert predicted logarithms into levels, we take into account that the expected value is approximately given by \(\exp \left(\lambda + \frac{\sigma^2}{2} \right) \) where \(\lambda \) is the predicted value of the logarithm and \(\sigma^2 \) is the variance of the expected value of the logarithm, which corresponds to the variance of the error term in the age-period-cohort model. This approximation is exact if the error term is normally distributed.

\(^{19}\)The principle of maximum entropy states that “in making inferences on the basis of partial information we must use that probability distribution which has maximum entropy subject to whatever is known”. Entropy is defined as \(-E \log (p(x_i))\), where \(p(x_i) \) is the probability/density of outcome \(x_i \). Intuitively, entropy is the expected value of uncertainty in a random variable’s outcomes or the average level of information gained from observing the variable’s outcomes. By using a maximum entropy distribution to model within-cohort income distributions, we make the least amount of additional assumptions on the functional form of the income distribution after imposing the mean and the Gini coefficient. This approach therefore minimizes bias resulting from making assumptions that may not be true.
mean and Gini coefficient. This distribution was derived by Eliazar and Sokolov (2010), and we refer to it as the Maximum Entropy (ME) distribution.20

The cumulative distribution function of the ME distribution is given by

$$F_{\text{ME}}(y; \sigma, \rho) = 1 - \frac{1}{\sigma \exp(\rho y) + (1 - \sigma)}$$

for $y \geq 0$, (10)

where the parameters σ and ρ are related to the mean income, μ, and the income Gini coefficient, g, as follows:

$$\mu = \frac{\log \sigma}{(\sigma - 1) \rho}$$

(11)

$$g = 1 + \frac{1}{\sigma - 1} - \frac{1}{\log \sigma}.$$
(12)

Since the expressions for μ and g are invertible for $\mu > 0$ and $0 < g < 1$, we can write the subgroup CDF as a function of the subgroup moments,

$$F_{a,p,c,e}(y) = F_{\text{ME}}(y; \mu_{a,p,c,e}, g_{a,p,c,e}).$$

(13)

After fitting all income distributions at the subgroup level using the observed subgroup means and Gini coefficients, we construct the population-level income distribution as a weighted sum of the subgroup CDFs

$$\Phi_p(y) = \sum_{a,e} s_{a,p,c,e} F_{a,p,c,e}(y),$$

(14)

where $s_{a,p,c,e}$ is population share of age-cohort-education-group (a, c, e) in period p. The population-level Gini coefficient can then be computed as

$$G_p = 1 - \frac{1}{\mu_p} \int_{0}^{\infty} (1 - \Phi_p(y))^2 dy,$$

(15)

where μ_p is the population-level mean income in period p.

To test our methodology we compute the population-level income Gini coefficient for each survey year by applying our aggregation method to the observed subgroup moments, and compare them with the population-level Gini coefficients computed directly

20This is a slight abuse of language as the distribution we use here is a particular member of the class of maximum entropy distributions. In appendix, we use lognormal and gamma as alternative distributions, which are also maximum entropy distributions but for different information constraints.
from the data. Figure 4 depicts the results of this comparison. The solid black line shows the aggregated Gini coefficients while the blue stars depict the population-level Gini coefficients computed directly from survey data. The aggregated Gini coefficients follow closely the path of the true Gini coefficients in both the CPS and SCF+ data. This observation lends confidence that our aggregation method is able to aggregate the Gini coefficients with only limited loss of information.

To construct our main counterfactuals, we apply this aggregation methodology to the counterfactual subgroup moments and predicted population shares. Counterfactual subgroup moments are constructed as in equations (8) and (9). Similarly, we construct predicted population shares as

\[
\tilde{s}_{a,p^\prime,c,e} = \begin{cases}
\phi_{a,p^\prime} \psi_c & \text{if } c < \bar{c}_0 \\
\phi_{a,p^\prime} \psi_{\bar{c}_0} & \text{if } c \geq \bar{c}_0,
\end{cases}
\]

(16)

where \(\phi_{a,p}\) denotes the population share of age group \(a\) in year \(p\), which is either observed in the survey data or taken from the census forecasts, \(\psi_c\) is the college share of cohort \(c\), which is assumed to be constant after age 26, and \(\bar{c}_0\) is the youngest cohort present in the base year.
III Results

III.1 The role of demographic change in the past

Figure 5 shows how demographic change in the past has affected the evolution of income inequality. We show the results for both the CPS and the SCF+ data for comparison. The blue stars show the actual evolution of income inequality in the survey data. The solid black line shows the aggregated Gini coefficients using the predicted values from the age-period-cohort model. In contrast to figure 4, differences between our aggregated time series and the observed population-level Gini coefficients now stem from two sources. First, like in figure 4, using parametric income distributions introduces error if incomes at the subgroup level do not follow exactly the assumed parametric distribution. Second, using predicted values from our age-period-cohort models to fit the parametric distributions introduces additional error if the estimated model does not explain all the variation in the data. Overall, we match the shape of the time series well and the differences between the aggregated and the observed population-level Gini coefficients are small.

Starting from each possible base year, a dashed gray line plots how income inequality would have evolved if demographic change unfolded as it actually did but the economic
environment was held fixed in the base year21. We find that demographic change has had an important effect on the evolution of income inequality in the past. Moreover, it turns out that demographic change has become more important over time. In particular, we find that demographic change has little effect on income inequality if the economic environment is held fixed in the 1950s, 1960s, or 1970s. The counterfactual trajectories of income inequality for these base years show slight decrease and then recovery back to the initial level. The slopes of the counterfactual trajectories are steeper, however, for more recent base years. For example, if the economic environment is held fixed after the mid-1990s, then our counterfactuals not only show an increase in the income Gini coefficient, but demographic change can actually account for all of the observed increase in income inequality. These results are consistent across both data sets.

How much of the actual increase in the income Gini coefficient can be accounted for by demographic change depends on the normalization of the linear age, period, and cohort trends. As we show in appendix C however, a large share of the observed increase in income inequality since the 1990s can be accounted for by demographic change even if we impose that there is no trend in the cohort profile and we instead allow the period effects to exhibit a strong positive trend.

In figure 5, we use age, period, and cohort effects that are estimated on the full sample. As an additional exercise, we compute vintage predictions in appendix D in which for each base year we only use data up until that year. We obtain similar results, especially for the SCF+ data for which the vintage predictions are almost identical to the past counterfactuals depicted in figure 5.

In our main analysis we measure aggregate inequality using the Gini coefficient. However, the Gini coefficient does not capture all changes in the distribution of household income. It is therefore important to know whether our main findings also apply to other inequality measures. In appendix E we study the effect of demographic change on the evolution of the share of income received by households in the top five percentiles and find similar results.

III.2 The role of demographic change in the future

The important role of past demographic change, especially in the recent decades, raises the question whether demographic change will further increase income inequality in the

21To compute the counterfactual evolution starting from base years 1974, 1980, and 1986, for which we do not have survey waves in the SCF+ data, we linearly interpolate the period fixed effects and the age-education-specific population shares.
future. To address this question, we choose the most recent survey wave as base year and plot in figure [4] the evolution of income inequality under predicted demographic change until the year 2060. We plot the evolution of the Gini coefficient in the future under three different normalization, depicted as the dashed lines.

We find that demographic change will lead to an increase in income inequality over the next four decades. This is the case in both the CPS as well as the SCF+ data irrespective of whether we attribute trends to cohort effects or period effects, although the increase is more dramatic in the former case. The difference between the three specifications is due to two interlinked factors. First, assuming no period trend in income Gini coefficient in the past implies a stronger positive cohort trend. Thus, cohort replacement will put a stronger upward pressure on overall income inequality. Second, the estimated age profile of within-cohort income Gini coefficient is steeper if we assume no period trends, which implies that projected population aging has a greater effect on income inequality.

III.3 Decomposing the effects of demographic change

We have shown above that demographic change has mattered for the evolution of income inequality in the recent past and will likely further increase income inequality in the future. An interesting question is whether projected demographic change will
increase income inequality predominantly through the effect of population aging or cohort replacement. To investigate the respective contributions of these two channels, we construct additional counterfactuals where we shut down either the population aging or the cohort replacement channel. These counterfactuals are computed under the baseline normalization where we assume equal trends in period and cohort effects in both log mean income and log Gini coefficient.

To isolate the effect of cohort replacement, we fix the marginal age distribution of the population. In particular, for each target year p', we construct the counterfactual population-level CDF as

$$\tilde{\Phi}_{p'}(y) = \sum_{a,e} \tilde{s}_{a,p',c,e} \tilde{F}_{a,p',c,e}(y), \quad (17)$$

where counterfactual income distributions, $\tilde{F}_{a,p',c,e}(y)$, are constructed as before, and population shares, $\tilde{s}_{a,p',c,e}$, are constructed as

$$\tilde{s}_{a,p',c,e} = \begin{cases} \phi_{a,\bar{p}} \psi_c & \text{if } c < \bar{c}_0 \\
\phi_{a,\bar{p}} \psi_{\bar{c}_0} & \text{if } c \geq \bar{c}_0, \end{cases} \quad (18)$$

where $\phi_{a,\bar{p}}$ is the population share of age group a in the base year \bar{p}, and ψ_c is the college share of cohort c.

To isolate the effect of population aging, we remove all cohort differences and allow only population shares of different age groups to change. In particular, we first equalize college shares across birth cohorts by setting the college share in each cohort equal to the aggregate college share in the base year. We then equalize cohort effects by setting cohort effects equal to a common cohort effect, $\bar{\kappa}_{\bar{p},e}$, in each education group e. The common cohort effects are chosen such that the predicted aggregate Gini coefficient in the base year remains unchanged. We thus set means and Gini coefficients as

$$\tilde{\mu}_{a,p',e} = \exp \left(\theta_{a}^\mu + \alpha_{a}^\mu a + \pi_{a,e}^\mu \bar{\mu} + \tilde{\alpha}_{a,e}^\mu + \tilde{\pi}_{a,e}^\mu + \bar{\kappa}_{\bar{p},e} + \frac{\sigma_{2,a}^{2,e}}{2} \right) \quad (19)$$

$$\tilde{g}_{a,p',e} = \exp \left(\theta_{a}^g + \alpha_{a}^g a + \pi_{a,e}^g \bar{\mu} + \tilde{\alpha}_{a,e}^g + \tilde{\pi}_{a,e}^g + \bar{\kappa}_{\bar{p},e} + \frac{\sigma_{2,a}^{2,g}}{2} \right) \quad (20)$$

and form subgroup CDFs by plugging these moments into equation (13). Finally, we
construct the population-level CDF as

$$\tilde{\Phi}_{p'}(y) = \sum_{a,e} \tilde{s}_{a,p',e} \tilde{F}_{a,p',e}(y),$$

(21)

where $\tilde{s}_{a,p',e}$ are constructed as

$$\tilde{s}_{a,p',e} = \phi_{a,p} \psi_{p},$$

(22)

where $\phi_{a,p}$ is the population share of age group a in year p and ψ_{p} is the college share in the population in the base year \bar{p}.

Figure 7 plots the future evolution of income inequality under these counterfactuals. The solid line shows the full effect of demographic change under the baseline normalization. The two dashed lines show the isolated effects of population aging and cohort replacement. The main observation from this figure is that cohort replacement is driving most of the increase in income inequality in the future while population aging has a small positive effect.

Having found that population aging will hardly affect income inequality in the future raises the question whether this was also the case in the past. In figure 8, we compare the increase in income inequality over different 21 year periods in our baseline counterfactual to the obtained increase if we shut down either the cohort replacement or the population aging channel.

We find that population aging increased income inequality in the 1950s and in the time period after year 1980. The effect of population aging peaked in the 21 year period starting around the year 2000 when it explained about one third of the full effect of demographic change.\(^{22}\) We can also see that the effect of population aging has returned to almost zero by the time period starting with the latest survey wave, which is consistent with the findings in figure 7. Overall, cohort replacement accounts for most of the increase in income inequality driven by demographic change.

IV A re-weighting analysis

Our findings suggest a more important role for demographic change in explaining the evolution of household income inequality than generally found in the literature (e.g.

\(^{22}\)As the aggregation of age, period, and cohort effects into a population-level Gini coefficient is highly nonlinear, the individual effects of population aging and cohort replacement need not sum up exactly to the full effect of demographic change in our counterfactual. In practice, however, we find that the sum of the effects of the individual channels is not too far from the full effect of demographic change.
Figure 7: Decomposition of the effect of demographic change in the future.

Previous studies of compositional effects have typically relied on using a re-weighting method following DiNardo et al. (1996). For comparison, we re-implement our thought experiment using a re-weighting method. In this exercise, we account for changes in terms of the age structure and educational attainment of the US population. These are the most common characteristics used in studies of compositional effects on inequality (see e.g. Lemieux (2006), Kuhn et al. (2020), Hoffmann et al. (2020)), and we observe these characteristics in both surveys. Moreover, educational attainment is fairly constant after age 26 which simplifies the implementation of the thought experiment.

Let $F_{YX,p}$ be the cumulative distribution function for the joint distribution of income Y and characteristics X in year p, and let $F_{X,p}$ be the cumulative distribution function for the marginal distribution of characteristics X in year p. Given a pair of base year \bar{p} and target year p' with $p' > \bar{p}$, our goal is to compute a counterfactual income distribution for the target year, $\bar{F}_{YX,\bar{p},p'}$, by fixing the conditional distribution of income in the base year, $F_{Y|X,p}$, and implementing a distribution of characteristics, $\bar{F}_{X,p'}$, as implied by our thought experiment. This counterfactual income distribution can be obtained under the re-weighting approach by suitably re-weighting the cross-sectional data in the base year. In our implementation, the characteristics X include age and a dummy for college education.

We construct two sets of re-weighting factors. The first set of factors re-weigh the
Figure 8: Decomposition of the effect of demographic change in the past and future.

data in the base year to match the marginal distribution of age in the target year. The second set of re-weighting factors adjusts the share of college-educated household heads in each age group to account for the fact that any given age corresponds to a more recent birth cohort in the target year compared to the base year. For birth cohorts older than 26 in the base year, we assume that their college share remains fixed. For birth cohorts that turn 26 only after the base year, we assume that they have the same college share as the youngest cohort in the base year.

For each pair of base and target year \((\bar{p}, p')\), the first set of age-specific re-weighting factors, \(\phi_{\bar{p}, p'}(a)\), is given by the ratio of the marginal density of age in the target year to the density in the base year

\[
\phi_{\bar{p}, p'}(a) = \frac{dF_{A, p'}(a)}{dF_{A, \bar{p}}(a)}. \tag{23}
\]

Using the fact that birth cohort equals year minus age, the second set of age and education-specific re-weighting factors, \(\psi_{\bar{p}, p'}(a, e)\), can be written as

\[
\psi_{\bar{p}, p'}(a, e) = \begin{cases}
\frac{dF_{E|A, \bar{p}}(e|a-(p'-\bar{p}))}{dF_{E|A, \bar{p}}(e|a)} & \text{for } a \geq a_0 + p' - \bar{p} \\
\frac{dF_{E|A, \bar{p}}(e|a_0)}{dF_{E|A, \bar{p}}(e|a)} & \text{for } a < a_0 + p' - \bar{p}
\end{cases} \tag{24}
\]

where \(F_{E|A, \bar{p}}(e|a)\) denotes the conditional distribution of education, \(E\), given age, \(A\), in the base year, \(\bar{p}\), and \(a_0\) is set to 26. Since in our data sets age and education take
discrete values, we can use relative frequencies as estimators for densities\footnote{DiNardo et al. (1996) suggest estimating densities using a regression analysis and Bayes theorem. Their approach is equivalent to ours when densities are estimated using a fully saturated model. Estimating a fully saturated model is feasible in our context, because the common support assumption holds.}. We can study the compositional effects of demographic change by multiplying the sample weight of each observation in the base year by the product of the two re-weighting factors, which results in the desired counterfactual distribution of income for the target year. In particular, we can compute the counterfactual Gini coefficient $\tilde{G}_{\bar{p},p'}$ as

$$\tilde{G}_{\bar{p},p'} = \frac{\sum_{i}^{N_{\bar{p}}} \sum_{j=i+1}^{N_{\bar{p}}} w_i w_j |y_i - y_j|}{\sum_{i}^{N_{\bar{p}}} w_i \sum_{i}^{N_{\bar{p}}} w_i y_i},$$

(25)

where $(y_i)_{i=1}^{N_{\bar{p}}}$ is the vector of income observations from the base year \bar{p} and $w_i = \omega_i \phi_{\bar{p},p'}(a_i) \psi_{\bar{p},p'}(a_i,e_i)$, where ω_i is the sample weight for observation i in the base year.

Because we only change the weights and not the underlying observations in the base year, the income distributions within population subgroups are held fixed and the overall income Gini coefficient can only change as a result of changing shares of different subgroups. Hence, as long as cohort differences in income distributions are captured by age and education of the household head, this exercise corresponds to the thought experiment of fixing the economic environment in its state in the base year and only allowing the compositional effects of demographic change to shape income inequality in the subsequent years.

In figure 9, we plot the actual evolution of the income Gini coefficient together with counterfactual evolutions for different base years. The blue stars again show the observed evolution of income inequality in the survey data. The dashed lines starting from different base years show the evolution of income inequality driven by demographic change. In contrast to our main results, the re-weighting analysis suggests that demographic change has contributed little to the observed increase in income inequality.

IV.1 Shortcomings of the re-weighting analysis

The re-weighting method gets the effect of demographic change right only if the conditional distribution of unobserved characteristics does not change over time. This is typically called the ignorability or conditional independence assumption (Fortin et al., 2011). In our case, this means that all characteristics which affect a cohort’s income distribution must be summarized by that cohort’s share of college-educated household
heads. This is unlikely to be true. To the extent that subgroup income distributions evolve according to the age-period-cohort model in section II.1, the estimated cohort profiles clearly show that differences in age and educational attainment alone cannot satisfactorily explain cohort-level differences in income distributions.

To complicate matters, population aging requires the researcher to increase the weights on older households in order to match the evolution of the population age structure. This is problematic because older individuals in any given cross-section belong to earlier birth cohorts. Any attempt to match the evolution of the age structure therefore implies up-weighting households whose unobserved characteristics are furthest from those of the typical household in the target year. Hence, the re-weighting analysis fails to capture the effect of cohort replacement and confounds the effect population aging.

Interestingly, the literature on adjusting Gini coefficients for differences in age structures following Paglin (1975) often ignores that income distributions can depend on birth cohorts, and therefore derives age-adjusted Gini coefficients that are also confounded by cohort effects.
V Conclusion

In this paper, we study how demographic change affects the evolution of household income inequality in the United States. We consider a thought experiment in which the economic environment is held fixed but demographic change takes place. In this thought experiment, demographic change affects inequality not only because population aging increases the share of older households, but also because older birth cohorts are gradually replaced by younger birth cohorts with a different distribution of income-relevant characteristics. Moreover, we use the thought experiment to study how projected demographic change will affect inequality in the near future.

The main contribution of this paper is to highlight the importance of cohort differences and to implement a parametric methodology that can account for both population aging and cohort replacement. We model the evolution of subgroup income distributions by an additive age-period-cohort model, which allows us to account for cohort differences in both observed and unobserved characteristics. Using household income data for the US, we estimate life-cycle profiles and cohort differences in mean incomes and income Gini coefficients. We document important cohort differences in income distributions that are not accounted for by differences in age and educational attainment. We then use the estimated age and cohort effects to predict how the moments of subgroup income distributions evolve under demographic change when the economic environment is held fixed. Finally, we use these counterfactual moments together with predicted population shares to study the effect of demographic change on aggregate inequality.

We find that demographic change plays an important role in the evolution of population-level income inequality in the US – both in the past and in the future. In our thought experiment, the compositional effects of demographic change can account for all of the increase in income inequality over the past two decades. Moreover, we predict that demographic change will further increase inequality in the near future, with our estimates suggesting an increase in the income Gini coefficient of between one and six percentage points by the year 2040.

To derive these results, we impose a number of restrictions on the data. First, we assume additively separable age, period, and cohort profiles for the logarithms of mean income and the income Gini coefficient at the level of the demographic subgroup. In the main text, we discuss a simple income process that gives rise to additive age, period, and cohort effects for these moments. Second, we restrict linear trends in period and cohort effects to be weakly positive. Finally, our thought experiment abstracts from
general equilibrium effects and is therefore a *simple counterfactual* (Fortin et al., 2011).

An important insight from our paper is that changes in aggregate inequality are not always indicative of contemporaneous changes in the economic environment. Instead, changes in aggregate inequality can result from the gradual replacement of older cohorts whose characteristics were shaped several decades earlier. In the case of the United States, we argue that cohorts born in the second half of the 20th century have become progressively more unequal in their income-relevant characteristics, which in turn affects the evolution of aggregate income inequality in the first half of the 21st century.
References

Appendix

A Age, period, and cohort profiles under different normalizations

Figures 10 to 13 show the estimated age, period, cohort profiles under alternative normalizations suggeted by Lagakos et al. (2018). The green lines show the profiles under no trend in period effects normalization, the red line shows the profiles under no cohort trend normalization and the blue line shows the profiles under the intermediate case of assuming equal trends in period and cohort profiles. Hence, the profiles plotted in blue correspond to those shown in section II.1.3.
Figure 10: Age-, period-, and cohort profiles of log mean income and income Gini coefficients for households with non-college educated household head in the CPS data under different normalizations for the linear trends. The first element in each profile is normalized to zero.
Figure 11: Age-, period-, and cohort profiles of log mean income and log Gini coefficients for households with college educated household head in the CPS data under different normalizations for the linear trends. The first element in each profile is normalized to zero.
Figure 12: Age-, period-, and cohort profiles of log mean income and log Gini coefficients for households with non-college educated household head in the SCF+ data under different normalizations for the linear trends. The first element in each profile is normalized to zero.
Figure 13: Age-, period-, and cohort profiles of log mean income and log Gini coefficients for households with college educated household head in the SCF+ data under different normalizations for the linear trends. The first element in each profile is normalized to zero.
B Robustness of estimation results from age-period-cohort model

We estimate our age-period-cohort model on a balanced sample in age and survey waves. As a consequence, only a fraction of birth cohorts are observed at all ages, while most cohorts are observed when they are either relatively young or relatively old. It also means that we for some cohorts we have much less observations that for others. One may thus be concerned that this panel structure affects our estimation results. For example, if the age profile of income inequality differed across decades, the age-period-cohort model would partially attribute the induced variation to cohort effects. In this case, estimating the age-period-cohort models on different sub-periods would result in different age and cohort profiles.

We address this concern by re-estimating the age-period-cohort model on different restricted time windows and by comparing the resulting age and cohort profiles. Reassuringly, we find that profiles estimated on restricted samples are similar to the profiles estimated on the full sample. In figures 14, 15, 16, and 17, we plot the age and cohort profiles from estimating the age-period-cohort model on different sub-periods consisting of 10 consecutive waves in the CPS and of 5 consecutive waves in the SCF+ data. For each sub-period, we re-estimate all parameters of the model such that the age and cohort profiles can take different shapes. In each case, we normalize the trend in the age profile to be equal to the trend estimated in the full sample under the normalization of equal cohort and period trends. This normalization, however, does not force the linear slopes of the period and cohort profiles in the models estimated on the sub samples to be identical to the ones in the full model, nor does it constrain the nonlinear age, period, and cohort effects. Reassuringly, we find that the overall shapes of the age and cohort profiles do not depend on the sub-period used to estimate the age-period-cohort model.
Figure 14: CPS, Non-college
Figure 15: CPS, College
Figure 16: SCF+, Non-college
Birth cohort 1927 is used as the reference cohort.

Figure 17: SCF+, College
C The role of demographic change in the past under alternative normalizations

In figure 5 in the main text, we show that under our baseline normalization demographic change explains a large share of the observed increase in income inequality in the past – especially since the 1990s. How much of the actual increase in the income Gini coefficient following a given base year can be accounted for by demographic change depends on the normalization of the linear age, period, and cohort trends. In figure 18 we plot the actual increase in the income Gini over an 21 year period following each base year together with the increase in the counterfactuals over the same time period. We again see that the role of demographic change has become more important starting in the 1970s. The role of demographic change is always stronger if we assume that there are no period trends in income inequality over the sample period and the cohort profile is therefore estimated to have a positive trend. Nevertheless, we find that a large share of the observed increase in income inequality since the 1990s can be accounted for by demographic change even if we impose that there is no linear trend in cohort effects and we instead allow the period effects to exhibit a strong positive linear trend.
Figure 18: Increase in income Gini driven by demographic change over periods of 21 years.

D Vintage predictions

In the baseline counterfactuals, we use age, period, and cohort effects that are estimated on the full sample. In particular, even when we consider a base year in the past, we estimate the relevant cohort fixed effects from all available years in our data set – including all years after the base year. If the age-period-cohort model describes the data generating process well, this approach is innocent and will increase precision while not biasing the estimates. In appendix B we show that estimating the age-period-cohort model on restricted sub-periods does not appear to affect the estimated nonlinear cohort effects by much.

The baseline counterfactuals do not, however, necessarily correspond to the predictions that we would have made, had we written the paper in the respective base year. Besides the fact that we would not have obtained exactly the same estimates, the normalization of the linear trends also depends on the time period covered in the data. In figure 19 we recompute figure 3 from the main text with the exception that for each base year, we now we only use data up until that year to estimate the age, period, and cohort effects that we use for the predictions. Moreover, for each base year, we force the linear trends in period and cohort profiles to be of equal size. This exercise corresponds to computing vintage predictions, which show the predictions that we would have made, had we written the paper in the respective base year.

Panel (b), which shows the vintage predictions for the SCF+ data, looks remarkably
similar to the corresponding panel in figure 5 in the main text. While we would not have predicted any increase in income inequality due to demographic change had we written the paper in the early 1970s, we would have predicted a steep increase had we written the paper in the early 1990s. In fact, as we find in figure 5 in the main text, the predicted increase in income inequality since the 1990s accounts for all of the observed increase since then.

The findings are somewhat different for the CPS data. While we also would have predicted all of the observed increase in income inequality had we written the paper in the 1990s, we find that we would have predicted a significant increase even if we had written the paper in the early 1970s. This stands in contrast to the findings in the main text and the vintage predictions derived from the SCF+ data. This discrepancy stems from the normalization of the linear trends.

Because the SCF+ data covers a longer time period that includes the 1950s and 1960s during which income inequality did not increase, the linear trends in period and cohort profiles are comparatively small and the choice of normalization matters little. Hence, restricting the data set by dropping later years hardly affects how we normalize the linear trends. The CPS data on the other hand covers a time period throughout which income inequality has increased and the linear trends in period and cohort profiles, which we force to be equal, are therefore steeper. Moreover, we estimate the profile of period effects to be steeper at the beginning of the sample period relative to the end. Hence, restricting the data set by dropping later years combined with the equal trends assumption results in steeper cohort profiles for earlier base years. Consequently, demographic change drives up income inequality more strongly for earlier base years.
E The effect of demographic change on the top five percent income share

In our main analyses in section III we measure aggregate inequality using the Gini coefficient. However, there is increased attention on the evolution of top income shares. It is therefore important to know whether our main findings also apply to these inequality measures. In this appendix, we study the effect of demographic change on the evolution of the share of income received by households in the top five percentiles. We conduct this analysis using the SCF+ data without dropping the top 1 percent of households. This is feasible because the SCF+ data is not topcoded.

To derive the evolution of the top 5 percent income share in the thought experiment, we follow the same steps as discussed in section III. That is, we construct counterfactual mean incomes and Gini coefficients for population subgroups using the same estimated age, period, cohort effects as in the main analysis. To derive the aggregate income distribution, however, we use a different parametric distribution to model subgroup income distributions. We do this because the maximum entropy distribution introduced in section II.3 has a thinner right tail than observed income distributions. As a consequence, if we use the same parametric distribution as in section II.3 we underestimate the top 5 percent income share in the aggregate income distribution as can be seen in figure 20.
Figure 20: Aggregated top 5 percent income shares using maximum Shannon entropy distribution.

To match the top five percent income share in the aggregate income distribution, we change the notion of entropy from the standard Shannon entropy to Tsallis entropy, which is a generalization of Shannon entropy. Maximum Tsallis entropy distributions have been used in applied sciences to model phenomena that follow a power law. We model the subgroup income distributions with the parametric distribution that maximizes Tsallis entropy for given mean and Gini coefficient. This distribution has a free parameter, q, which governs the thickness of the tail. We find that with $q = 0.67$, we are able to match the top five percent income share in the aggregate income distribution quite well.

In figure 21 we show the evolution of the top five percent income share in our thought experiment under the baseline normalization of equal trends in period and cohort effects. The blue stars show the evolution of the top 5% income share in the SCF+ data, and the solid black line shows the evolution of the top 5% income share in the aggregate distribution derived from the predicted values of the age-period-cohort model. The dashed lines show the evolution of the top 5% income share in our thought experiment corresponding to different base years. Our findings for the top 5% income share are in line with our findings for the Gini coefficient in section III. Demographic

25Tsallis entropy is defined as $H_T(f) = \frac{1}{q-1} \left(\int_{-\infty}^{\infty} f^q(x)dx \right)$, where f is a density function and q is a parameter. In the limit $q \to 1$, this definition coincides with the standard Shannon entropy, $H(f) = -\int_{-\infty}^{\infty} f(x) \ln f(x)dx$.

26This distribution is solved for in Preda et al. (2015).
change has little effect on income inequality if we fix the economic environment to a base year in the 1950s, 1960s, or the 1970s. If we fix the economic environment to a base year in the mid-1990s, however, we find that demographic change can account for most of the observed increase in top 5% income share since then.

F Aggregation of Gini coefficients with Maximum Entropy distribution

Figure 4 in the main text shows that we can match the population-level Gini coefficients extremely well by using a parametric distribution to describe subgroup income distributions. We choose the distribution that is supported on the positive real line and maximizes entropy given our estimated moments, mean income and income Gini coefficient. Here, we consider lognormal and gamma distributions as alternative two-parameter distributions to describe incomes at the subgroup level and compare them to the distribution used in the main text.

The lognormal and the gamma distributions are maximum entropy distributions for given mean and variance of log income, and mean income and mean logarithmic deviation of income, respectively. Figure 22 shows that using these alternative income distributions and targeting their respective characterizing moments at the subgroup
Figure 22: Aggregated income Gini coefficients using different parametric distributions.

level results in a worse fit for the population-level Gini coefficient.